User Tools

Site Tools


workshop:atbootloader

This is an old revision of the document!


// /* Serial Bootloader for Atmel mega8 AVR Controller */ /* */ /* ATmegaBOOT.c */ /* */ /* Copyright © 2003, Jason P. Kyle */ /* */ /* Hacked by DojoCorp - ZGZ - MMX - IVR */ /* Hacked by David A. Mellis */ /* */ /* This program is free software; you can redistribute it */ /* and/or modify it under the terms of the GNU General */ /* Public License as published by the Free Software */ /* Foundation; either version 2 of the License, or */ /* (at your option) any later version. */ /* */ /* This program is distributed in the hope that it will */ /* be useful, but WITHOUT ANY WARRANTY; without even the */ /* implied warranty of MERCHANTABILITY or FITNESS FOR A */ /* PARTICULAR PURPOSE. See the GNU General Public */ /* License for more details. */ /* */ /* You should have received a copy of the GNU General */ /* Public License along with this program; if not, write */ /* to the Free Software Foundation, Inc., */ /* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* */ /* Licence can be viewed at */ /* http://www.fsf.org/licenses/gpl.txt */ /* */ /* Target = Atmel AVR m8 */ //

#include <inttypes.h> #include <avr/io.h> #include <avr/pgmspace.h> #include <avr/eeprom.h> #include <avr/interrupt.h> #include <avr/delay.h>

#define F_CPU 16000000 /* We, Malmoitians, like slow interaction * therefore the slow baud rate ;-) */ #define BAUD_RATE 9600

/* 6.000.000 is more or less 8 seconds at the * speed configured here */ #define MAX_TIME_COUNT 6000000 #define MAX_TIME_COUNT (F_CPU»1) /#define MAX_TIME_COUNT_MORATORY 1600000

/* SW_MAJOR and MINOR needs to be updated from time to time to avoid warning message from AVR Studio */ #define HW_VER 0x02 #define SW_MAJOR 0x01 #define SW_MINOR 0x12

AVR-GCC compiler compatibility avr-gcc compiler v3.1.x and older doesn't support outb() and inb() if necessary, convert outb and inb to outp and inp #ifndef outb #define outb(sfr,val) (_SFR_BYTE(sfr) = (val)) #endif #ifndef inb #define inb(sfr) _SFR_BYTE(sfr) #endif /* defines for future compatibility */ #ifndef cbi #define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) #endif #ifndef sbi #define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) #endif /* Adjust to suit whatever pin your hardware uses to enter the bootloader */ #define eeprom_rb(addr) eeprom_read_byte 1) #define eeprom_rw(addr) eeprom_read_word 2) #define eeprom_wb(addr, val) eeprom_write_byte 3) /* Onboard LED is connected to pin PB5 */ #define LED_DDR DDRB #define LED_PORT PORTB #define LED_PIN PINB #define LED PINB5 #define SIG1 0x1E Yep, Atmel is the only manufacturer of AVR micros. Single source :( #define SIG2 0x93 #define SIG3 0x07 #define PAGE_SIZE 0x20U 32 words void putch(char); char getch(void); void getNch(uint8_t); void byte_response(uint8_t); void nothing_response(void); union address_union { uint16_t word; uint8_t byte[2]; } address; union length_union { uint16_t word; uint8_t byte[2]; } length; struct flags_struct { unsigned eeprom : 1; unsigned rampz : 1; } flags; uint8_t buff[256]; uint8_t address_high;

uint8_t pagesz=0x80;

uint8_t i; uint8_t bootuart0=0,bootuart1=0; void (*app_start)(void) = 0x0000; int main(void) { uint8_t ch,ch2; uint16_t w; cbi(BL_DDR,BL);

//sbi(BL_PORT,BL);
asm volatile("nop\n\t");
/* check if flash is programmed already, if not start bootloader anyway */
//if(pgm_read_byte_near(0x0000) != 0xFF) {
  /* check if bootloader pin is set low */
  //if(bit_is_set(BL_PIN,BL)) app_start();
//}
/* initialize UART(s) depending on CPU defined */
/* m8 */
UBRRH = (((F_CPU/BAUD_RATE)/16)-1)>>8; 	// set baud rate
UBRRL = (((F_CPU/BAUD_RATE)/16)-1);
UCSRB = (1<<RXEN)|(1<<TXEN);  // enable Rx & Tx
UCSRC = (1<<URSEL)|(1<<UCSZ1)|(1<<UCSZ0);  // config USART; 8N1
//UBRRL = (uint8_t)(F_CPU/(BAUD_RATE*16L)-1);
//UBRRH = (F_CPU/(BAUD_RATE*16L)-1) >> 8;
//UCSRA = 0x00;
//UCSRC = 0x86;
//UCSRB = _BV(TXEN)|_BV(RXEN);
/* this was giving uisp problems, so I removed it; without it, the boot
   works on with uisp and avrdude on the mac (at least). */
//putch('\0');
//uint32_t l;
//uint32_t time_count;
//time_count=0;
/* set LED pin as output */
sbi(LED_DDR,LED);
for (i = 0; i < 16; i++) {
	outb(LED_PORT, inb(LED_PORT) ^ _BV(LED));
	_delay_loop_2(0);
}

//for (l=0; l<40000000; l++)
	//outb(LED_PORT, inb(LED_PORT) ^= _BV(LED));
/* flash onboard LED three times to signal entering of bootloader */
//for(i=0; i<3; ++i) {
  //for(l=0; l<40000000; ++l);
  //sbi(LED_PORT,LED);
  //for(l=0; l<40000000; ++l);
  //cbi(LED_PORT,LED);
//}

/* see comment at previous call to putch() */ putch('\0'); this line is needed for the synchronization of the programmer

/* forever */
for (;;) {
  //if((inb(UCSRA) & _BV(RXC))){
  /* get character from UART */
	ch = getch();
	
	/* A bunch of if...else if... gives smaller code than switch...case ! */

	/* Hello is anyone home ? */ 
	if(ch=='0') {
	  nothing_response();
	}

	/* Request programmer ID */
	/* Not using PROGMEM string due to boot block in m128 being beyond 64kB boundry  */
	/* Would need to selectively manipulate RAMPZ, and it's only 9 characters anyway so who cares.  */
	else if(ch=='1') {
		if (getch() == ' ') {
			putch(0x14);
			putch('A');
			putch('V');
			putch('R');
			putch(' ');
			putch('I');
			putch('S');
			putch('P');
			putch(0x10);
	  }
	}

	/* AVR ISP/STK500 board commands  DON'T CARE so default nothing_response */
	else if(ch=='@') {
	  ch2 = getch();
	  if (ch2>0x85) getch();
	  nothing_response();
	}

	/* AVR ISP/STK500 board requests */
	else if(ch=='A') {
	  ch2 = getch();
	  if(ch2==0x80) byte_response(HW_VER);		// Hardware version
	  else if(ch2==0x81) byte_response(SW_MAJOR);	// Software major version
	  else if(ch2==0x82) byte_response(SW_MINOR);	// Software minor version
	  //else if(ch2==0x98) byte_response(0x03);		// Unknown but seems to be required by avr studio 3.56
	  else byte_response(0x00);				// Covers various unnecessary responses we don't care about
	}

	/* Device Parameters  DON'T CARE, DEVICE IS FIXED  */
	else if(ch=='B') {
	  getNch(20);
	  nothing_response();
	}

	/* Parallel programming stuff  DON'T CARE  */
	else if(ch=='E') {
	  getNch(5);
	  nothing_response();
	}

	/* Enter programming mode  */
	else if(ch=='P') {
	  nothing_response();
	  // FIXME: modified only here by DojoCorp, Mumbai, India, 20050626
	  //time_count=0; // exted the delay once entered prog.mode
	}

	/* Leave programming mode  */
	else if(ch=='Q') {
	  nothing_response();
	  //time_count=MAX_TIME_COUNT_MORATORY; 	// once the programming is done, 
											// we should start the application
											// but uisp has problems with this,
											// therefore we just change the times
											// and give the programmer 1 sec to react
	}

	/* Erase device, don't care as we will erase one page at a time anyway.  */
	else if(ch=='R') {
	  nothing_response();
	}

	/* Set address, little endian. EEPROM in bytes, FLASH in words  */
	/* Perhaps extra address bytes may be added in future to support > 128kB FLASH.  */
	/* This might explain why little endian was used here, big endian used everywhere else.  */
	else if(ch=='U') {
	  address.byte[0] = getch();
	  address.byte[1] = getch();
	  nothing_response();
	}

	/* Universal SPI programming command, disabled.  Would be used for fuses and lock bits.  */
	else if(ch=='V') {
	  getNch(4);
	  byte_response(0x00);
	}

	/* Write memory, length is big endian and is in bytes  */
	else if(ch=='d') {
	  length.byte[1] = getch();
	  length.byte[0] = getch();
	  flags.eeprom = 0;
	  if (getch() == 'E') flags.eeprom = 1;
	  for (w=0;w<length.word;w++) {
	    buff[w] = getch();	                        // Store data in buffer, can't keep up with serial data stream whilst programming pages
	  }
	  if (getch() == ' ') {
			if (flags.eeprom) {		                //Write to EEPROM one byte at a time
				for(w=0;w<length.word;w++) {
					eeprom_wb(address.word,buff[w]);
					address.word++;
				}			
			} else {					        //Write to FLASH one page at a time
				//if (address.byte[1]>127) address_high = 0x01;	//Only possible with m128, m256 will need 3rd address byte. FIXME
				//else address_high = 0x00;
		
				//address.word = address.word << 1;	        //address * 2 -> byte location
				//if ((length.byte[0] & 0x01)) length.word++;	//Even up an odd number of bytes
				cli();					//Disable interrupts, just to be sure
				while(bit_is_set(EECR,EEWE));			//Wait for previous EEPROM writes to complete
				asm volatile(
						 "clr	r17		\n\t"	//page_word_count
						 "lds	r30,address	\n\t"	//Address of FLASH location (in words)
						 "lds	r31,address+1	\n\t"
						 "lsl r30				\n\t"  //address * 2 -> byte location
						 "rol r31				\n\t" 
						 "ldi	r28,lo8(buff)	\n\t"	//Start of buffer array in RAM
						 "ldi	r29,hi8(buff)	\n\t"
						 "lds	r24,length	\n\t"	//Length of data to be written (in bytes)
						 "lds	r25,length+1	\n\t"
						 "sbrs r24,0		\n\t"  //Even up an odd number of bytes
						 "rjmp length_loop		\n\t"
						 "adiw r24,1		\n\t"
						 "length_loop:		\n\t"	//Main loop, repeat for number of words in block							 							 
						 "cpi	r17,0x00	\n\t"	//If page_word_count=0 then erase page
						 "brne	no_page_erase	\n\t"						 
						 "rcall  wait_spm		\n\t"

“wait_spm1: \n\t” “lds r16,%0 \n\t” Wait for previous spm to complete “andi r16,1 \n\t” “cpi r16,1 \n\t” “breq wait_spm1 \n\t”

						 "ldi	r16,0x03	\n\t"	//Erase page pointed to by Z
						 "sts	%0,r16		\n\t"
						 "spm			\n\t"							 
						 "rcall  wait_spm		\n\t"

“wait_spm2: \n\t” “lds r16,%0 \n\t” Wait for previous spm to complete “andi r16,1 \n\t” “cpi r16,1 \n\t” “breq wait_spm2 \n\t” “ldi r16,0x11 \n\t” Re-enable RWW section “sts %0,r16 \n\t” “spm \n\t” “no_page_erase: \n\t” “ld r0,Y+ \n\t” Write 2 bytes into page buffer

						 "ld	r1,Y+		\n\t"							 
									 
						 "rcall  wait_spm		\n\t"

“wait_spm3: \n\t” “lds r16,%0 \n\t” Wait for previous spm to complete “andi r16,1 \n\t” “cpi r16,1 \n\t” “breq wait_spm3 \n\t”

						 "ldi	r16,0x01	\n\t"	//Load r0,r1 into FLASH page buffer
						 "sts	%0,r16		\n\t"
						 "spm			\n\t"
									 
						 "inc	r17		\n\t"	//page_word_count++
						 "cpi r17,%1	        \n\t"
						 "brlo	same_page	\n\t"	//Still same page in FLASH
						 "write_page:		\n\t"
						 "clr	r17		\n\t"	//New page, write current one first
						 "rcall  wait_spm		\n\t"

“wait_spm4: \n\t” “lds r16,%0 \n\t” Wait for previous spm to complete “andi r16,1 \n\t” “cpi r16,1 \n\t” “breq wait_spm4 \n\t”

						 "ldi	r16,0x05	\n\t"	//Write page pointed to by Z
						 "sts	%0,r16		\n\t"
						 "spm			\n\t"
						 "rcall  wait_spm		\n\t"

“wait_spm5: \n\t” “lds r16,%0 \n\t” Wait for previous spm to complete “andi r16,1 \n\t” “cpi r16,1 \n\t” “breq wait_spm5 \n\t” “ldi r16,0x11 \n\t” Re-enable RWW section “sts %0,r16 \n\t” “spm \n\t” “same_page: \n\t” “adiw r30,2 \n\t” Next word in FLASH

						 "sbiw	r24,2		\n\t"	//length-2
						 "breq	final_write	\n\t"	//Finished
						 "rjmp	length_loop	\n\t"
						 
						 "wait_spm:  \n\t"
						 "lds	r16,%0		\n\t"	//Wait for previous spm to complete
						 "andi	r16,1           \n\t"
						 "cpi	r16,1           \n\t"
						 "breq	wait_spm       \n\t"
						 "ret			\n\t"
						 
						 "final_write:		\n\t"
						 "cpi	r17,0		\n\t"
						 "breq	block_done	\n\t"
						 "adiw	r24,2		\n\t"	//length+2, fool above check on length after short page write
						 "rjmp	write_page	\n\t"
						 "block_done:		\n\t"
						 "clr	__zero_reg__	\n\t"	//restore zero register
						 : "=m" (SPMCR) : "M" (PAGE_SIZE) : "r0","r16","r17","r24","r25","r28","r29","r30","r31");
		
				/* Should really add a wait for RWW section to be enabled, don't actually need it since we never */
				/* exit the bootloader without a power cycle anyhow */
			}
			putch(0x14);
			putch(0x10);
		}		
	}

	/* Read memory block mode, length is big endian.  */
	else if(ch=='t') {
	  length.byte[1] = getch();
	  length.byte[0] = getch();
	  if (getch() == 'E') flags.eeprom = 1;
	  else {
			flags.eeprom = 0;
			address.word = address.word << 1;	        // address * 2 -> byte location
	  }
	  if (getch() == ' ') {		                // Command terminator
			putch(0x14);
			for (w=0;w < length.word;w++) {		        // Can handle odd and even lengths okay
				if (flags.eeprom) {	                        // Byte access EEPROM read
					putch(eeprom_rb(address.word));
					address.word++;
				} else {	
					if (!flags.rampz) putch(pgm_read_byte_near(address.word));
					address.word++;
				}
			}
			putch(0x10);
	  }
	}

	/* Get device signature bytes  */
	else if(ch=='u') {
	  if (getch() == ' ') {
			putch(0x14);
			putch(SIG1);
			putch(SIG2);
			putch(SIG3);
			putch(0x10);
	  }
	}

	/* Read oscillator calibration byte */
	else if(ch=='v') {
	  byte_response(0x00);
	}

} else { time_count++; if (time_count>=MAX_TIME_COUNT) { app_start(); } }

} /* end of forever loop */

}

void putch(char ch) {

/* m8 */
while (!(inb(UCSRA) & _BV(UDRE)));
outb(UDR,ch);

}

char getch(void) {

/* m8 */
uint32_t count = 0;
while(!(inb(UCSRA) & _BV(RXC))) {
	/* HACKME:: here is a good place to count times*/
	count++;
	if (count > MAX_TIME_COUNT)
		app_start();
}
return (inb(UDR));

}

void getNch(uint8_t count) {

uint8_t i;
for(i=0;i<count;i++) {
  /* m8 */
  //while(!(inb(UCSRA) & _BV(RXC)));
  //inb(UDR);
	getch(); // need to handle time out
}

}

void byte_response(uint8_t val) {

if (getch() == ' ') {
  putch(0x14);
  putch(val);
  putch(0x10);
}

}

void nothing_response(void) {

if (getch() == ' ') {
  putch(0x14);
  putch(0x10);
}

}

/* end of file ATmegaBOOT.c */

1)
uint8_t *)(addr
2)
uint16_t *)(addr
3)
uint8_t *)(addr), (uint8_t)(val
workshop/atbootloader.1340596910.txt.gz · Last modified: 2018/07/18 14:09 (external edit)