
[All code is copyright © 2007-2013 Cmock Project by Mike Karlesky, Mark VanderVoord, and Greg Williams.
This Documentation Is Released Under a Creative Commons 3.0 Attribution Share-Alike License]

What the What?
CMock is a nice little tool which takes your header fles and creates a Mock interface for it so that you can
more easily Unit test modules that touch other modules. For each function prototype in your header, like this
one:

int DoesSomething(int a, int b);

...you get an automatically generated DoesSomething function that you can link to instead of your real
DoesSomething function. By using this Mocked version, you can then verify that it receives the data you
want, and make it return whatever data you desire, make it throw errors when you want, and more... Create
these for everything your latest real module touches, and you're suddenly in a position of power: You can
control and verify every detail of your latest creation.

To make that easier, CMock also gives you a bunch of functions like the ones below, so you can tell that
generated DoesSomething function how to behave for each test:

void DoesSomething_ExpectAndReturn(int a, int b, int toReturn);

void DoesSomething_ExpectAndThrow(int a, int b, EXCEPTION_T error);

void DoesSomething_StubWithCallback(CMOCK_DoesSomething_CALLBACK YourCallback);

void DoesSomething_IgnoreAndReturn(int toReturn);

You can pile a bunch of these back to back, and it remembers what you wanted to pass when, like so:

test_CallsDoesSomething_ShouldDoJustThat(void)

{

 DoesSomething_ExpectAndReturn(1,2,3);

 DoesSomething_ExpectAndReturn(4,5,6);

 DoesSomething_ExpectAndThrow(7,8, STATUS_ERROR_OOPS);

 CallsDoesSomething();

}

This test will call CallsDoesSomething, which is the function we are testing. We are expecting that function to
call DoesSomething three times. The frst time, we check to make sure it's called as DoesSomething(1, 2)
and we'll magically return a 3. The second time we check for DoesSomething(4, 5) and we'll return a 6. The
third time we verify DoesSomething(7, 8) and we'll throw an error instead of returning anything. If
CallsDoesSomething gets any of this wrong, it fails the test. It will fail if you didn't call DoesSomething
enough, or too much, or with the wrong arguments, or in the wrong order.

CMock is based on Unity, which it uses for all internal testing. It uses Ruby to do all the main work (versions
1.8.6 through 1.9.2).

Generated Mock Module Summary
In addition to the mocks themselves, CMock will generate the following functions for use in your tests. The expect
functions are always generated. The other functions are only generated if those plugins are enabled:

Expect:
Your basic staple Expects which will be used for most of your day to day CMock work.

Original Function Generated Mock Function

void func(void) void func_Expect(void)

void func(params) void func_Expect(expected_params)

retval func(void) void func_ExpectAndReturn(retval_to_return)

retval func(params) void func_ExpectAndReturn(expected_params, retval_to_return)

Array:
An ExpectWithArray will check as many elements as you specify. If you specify zero elements, it will check just the pointer if
:smart mode is confgured or fail if :compare_data is set.

Original Function Generated Mock Function

void func(void) (nothing. In fact, an additional function is only generated if the params list contains pointers)

void func(ptr * param, other) void func_ExpectWithArray(ptr* param, int param_depth, other)

retval func(void) (nothing. In fact, an additional function is only generated if the params list contains pointers)

retval func(other, ptr* param) void func_ExpectWithArrayAndReturn(other, ptr* param, int param_depth, retval_to_return)

Callback:
As soon as you stub a callback in a test, it will call the callback whenever the mock is encountered and return the retval
returned from the callback (if any) instead of performing the usual expect checks. It can be confgured to check the
arguments frst (like expects) or just jump directly to the callback.

Original Function Generated Mock Function

void func(void) void func_StubWithCallback(CMOCK_func_CALLBACK callback)
where CMOCK_func_CALLBACK looks like: void func(int NumCalls)

void func(params) void func_StubWithCallback(CMOCK_func_CALLBACK callback)
where CMOCK_func_CALLBACK looks like: void func(params, int NumCalls)

retval func(void) void func_StubWithCallback(CMOCK_func_CALLBACK callback)
where CMOCK_func_CALLBACK looks like: retval func(int NumCalls)

retval func(params) void func_StubWithCallback(CMOCK_func_CALLBACK callback)
where CMOCK_func_CALLBACK looks like: retval func(params, int NumCalls)

Cexception:
If you are using Cexception for error handling, you can use this to throw errors from inside mocks. Like Expects, it
remembers which call was supposed to throw the error, and it still checks parameters.

Original Function Generated Mock Function

void func(void) void func_ExpectAndThrow(value_to_throw)

void func(params) void func_ExpectAndThrow(expected_params, value_to_throw)

retval func(void) void func_ExpectAndThrow(value_to_throw)

retval func(params) void func_ExpectAndThrow(expected_params, value_to_throw)

Ignore:
This plugin supports two modes. You can use it to force CMock to ignore calls to specifc functions or to just ignore the
arguments passed to those functions. Either way you can specify multiple returns or a single value to always return,
whichever you prefer.

Original Function Generated Mock Function

void func(void) void func_Ignore(void)

void func(params) void func_Ignore(void)

retval func(void) void func_IgnoreAndReturn(retval_to_return)

retval func(params) void func_IgnoreAndReturn(retval_to_return)

Ignore Args:
This plugin adds the ability to specify specifc arguments to ignore for a function, instead of ignoring all the arguments or
the entire function call, as the Ignore plugin supports. This will create a function for each argument and each function.

Original Function Generated Mock Function

void func(void)

void func(params) void func_IgnoreArg_paramName(void)

retval func(void)

retval func(params) void func_IgnoreArg_paramName(void)

ReturnThruPtr
This plugin adds a number of options for returning data through arguments that are pointers. This is fled separately from
the Expect/Ignore call, so you will want to issue one of those calls each time as well. This will only create an extra call for
arguments that are pointers. It will create one per pointer argument.

Original Function Generated Mock Function

void func(void)

void func(params) void func_ReturnThruPtr_paramName(val_to_return)
void func_ReturnArrayThruPtr_paramName(cal_to_return, len)
void func_ReturnMemThruPtr_paramName(val_to_return, size)

retval func(void)

retval func(params) void func_ReturnThruPtr_paramName(val_to_return)
void func_ReturnArrayThruPtr_paramName(cal_to_return, len)
void func_ReturnMemThruPtr_paramName(val_to_return, size)

Running CMock
CMock is a Ruby script and class. You can therefore use it directly from the command line, or include it in
your own scripts or rakefles.

Mocking from the Command Line

After unpacking CMock, you will fnd CMock.rb in the 'lib' directory. This is the fle that you want to run. It
takes a list of header fles to be mocked, as well as an optional yaml fle for a more detailed confguration
(see confg options below).

For example, this will create three mocks using the confguration specifed in MyConfg.yml:

ruby cmock.rb -oMyConfig.yml super.h duper.h awesome.h

And this will create two mocks using the default confguration:

ruby cmock.rb ../mocking/stuff/is/fun.h ../try/it/yourself.h

If you don't want to use YAML and want to inject your options directly to the command line, you can specify
most options directly using a --key=val notation. Quotation marks around the value are optional. The key is
always plain text. The value is either a number, text, symbol, or array separated by semicolons. Try a few
examples on:

ruby cmock.rb --mock_path=”build/mocks” blah.h

ruby cmock.rb --treat_externs=:include blah.h

ruby cmock.rb --attributes=”__irg;__fiq;register” blah.h

ruby cmock.rb --verbosity=1 blah.h

ruby cmock.rb --memcmp_if_unknown=false blah.h

Mocking From Scripts or Rake

CMock can be used directly from your own scripts or from a rakefle. Start by including cmock.rb, then create
an instance of CMock. When you create your instance, you may initialize it in one of three ways.

You may specify nothing, allowing it to run with default settings:

cmock = CMock.new

You may specify a YAML fle containing the confguration options you desire:

cmock = CMock.new('../MyConfig.yml')

You may specify the options explicitly:

cmock = Cmock.new(:plugins => [:cexception, :ignore], :mock_path => 'my/mocks/')

Config Options:

Passed as Ruby, confguration options look like this:

{ :attributes => [“__funky”, “__intrinsic”], :when_ptr => :compare }

Defned in the yaml fle, confguration options look more like this:

:cmock:

 :attributes:

 - __funky

 - __intrinsic

 :when_ptr: :compare

Option Purpose

:attributes These are attributes that CMock should ignore for you for testing purposes. Custom compiler extensions
and externs are handy things to put here.

:callback_after_arg_check Tell :callback plugin to do the normal argument checking before it calls the callback function. This
defaults to false, where the callback function is called instead of the argument verifcation.

:callback_include_count Tell :callback plugin to include an extra parameter to specify the number of times the callback has been
called. If set to false, the callback has the same interface as the mocked function. This can be handy
when you're wanting to use callback as a stub.

:cexception_include Tell :cexception plugin where to fnd CException.h... only need to defne if it's not in your build path
already.

:enforce_strict_ordering CMock always enforces the order that you call a particular function, so if you expect GrabNabber(int
size) to be called three times, it will verify that the sizes are in the order you specifed. You might also
want to make sure that all diferent functions are called in a particular order. If so, set this to true.

:framework Currently the only option is :unity. Eventually if we support other unity test frameworks (or if you write
one for us), they'll get added here.

:ignore Tell :ignore plugin to ignore :args_only or :args_and_calls (default) where it doesn't even care how many
times the mock was called

:includes An array of additional include fles which should be added to the mocks. Useful for global types and
defnitions used in your project. There are more specifc versions if you care WHERE in the mock fles
the includes get placed. You can defne any or all of :includes_h_pre_orig_header,
:includes_h_post_orig_header, :includes_c_pre_header, :includes_c_post_header

:memcmp_if_unknown This is true by default. When true, CMock will just do a memory comparison of types that it doesn't
recognize (not standard types, not in :treat_as, and not in a unity helper). If you instead want it to throw
an error, just set this to false.

:mock_path The directory where you would like the mock fles generated to be placed.

:mock_prefx The prefx to append to your mock fles. Defaults to “Mock”, so a fle “USART.h” will get a mock called
“MockUSART.c”

:plugins An array of which plugins to enable. 'expect' is always active. Also available currently are :ignore,
:ignore_arg, :array, :cexception, :callback, and :return_thru_ptr

:treat_as The :treat_as list is a shortcut for when you have created typedefs of standard types. Why create a
custom unity helper for UINT16 when the unity function TEST_ASSERT_EQUAL_HEX16 will work just
perfectly? Just add 'UINT16' => 'HEX16' to your list (actually, don't. We already did that one for you).
Maybe you have a type that is a pointer to an array of unsigned characters? No problem, just add
'UINT8_T*' => 'HEX8*'

:treat_as_void We've seen “fun” legacy systems typedef 'void' with a custom type, like MY_VOID. Add any instances of
those to this list to help CMock understand how to deal with your code.

:treat_externs Set to :include to mock externed functions or :exclude to ignore them (the default).

:unity_helper_path If you have created a header with your own extensions to unity to handle your own types, you can set
this argument to that path. CMock will then automagically pull in your helpers and use them. The only
trick is that you make sure you follow the naming convention: UNITY_TEST_ASSERT_EQUAL_YourType

:verbosity 0 for errors only. 1 for errors and warnings. 2 for normal. 3 for verbose

:when_no_prototypes When you give CMock a header fle and ask it to create a mock out of it, it usually contains function
prototypes (otherwise what was the point?). You can control what happens when this isn't true. You can
set this to :warn, :ignore, or :error

:when_ptr You can customize how CMock deals with pointers (c strings result in string comparisons... we're talking
about other pointers here). Your options are :compare_ptr to just verify the pointers are the same,
:compare_data or :smart to verify that the data is the same. :compare_data and :smart behaviors will
change slightly based on if you have the array plugin enabled. By default, they compare a single
element of what is being pointed to. So if you have a pointer to a struct called ORGAN_T, it will compare
one ORGAN_T (whatever that is).

Compiled Options:

A number of #defnes also exist for customizing the cmock experience.

CMOCK_MEM_STATIC or CMOCK_MEM_DYNAMIC

Defne one of these to determine if you want to dynamically add memory during tests as required from the
heap. If static, you can control the total footprint of Cmock. If dynamic, you will need to make sure you make
some heap space available for Cmock.

CMOCK_MEM_SIZE

In static mode this is the total amount of memory you are allocating to Cmock. In Dynamic mode this is the
size of each chunk allocated at once (larger numbers grab more memory but require less mallocs).

CMOCK_MEM_ALIGN

The way to align your data to. Not everything is as fexible as a PC, as most embedded designers know. This
defaults to 2, meaning align to the closest 2^2 → 4 bytes (32 bits). You can turn of alignment by setting 0,
force alignment to the closest uint16 with 1 or even to the closest uint64 with 3.

CMOCK_MEM_PTR_AS_INT

This is used internally to hold pointers... it needs to be big enough. On most processors a pointer is the same
as an unsigned long... but maybe that's not true for yours?

CMOCK_MEM_INDEX_TYPE

This needs to be something big enough to point anywhere in Cmock's memory space... usually it's an
unsigned int.

	What the What?
	Generated Mock Module Summary
	Expect:
	Array:
	Callback:
	Cexception:
	Ignore:
	Ignore Args:
	ReturnThruPtr

	Running CMock
	Mocking from the Command Line
	Mocking From Scripts or Rake
	Config Options:
	Compiled Options:

