
Test-Driven Development For

Embedded C++ Programmers
By James Grenning !

Test-Driven Development is a technique for programming. Initially, it requires a lot of
discipline. Over time it is addictive. TDD is a practice developed by Ward Cunningham
and Kent Beck, and it is a key practice of Extreme Programming . This technique [BECK]

can be used very effectively for developing embedded software. If you need your
software to work and want to have high test coverage, you should try TDD. !
Instead of talking a lot about TDD, I am going to show it to you TDD instead. I’ll show
you TDD in C++ and use CppUnitLite to write unit tests. I will also write code that [OM]

conforms to the Embedded C++ draft standard to the best of my ability to understand the
standard. If you are a C programmer, TDD can be used to develop C programs as
well , so please read on. [KOSS]

!
Our scenario is that we need an event logging class to use in our embedded application.
The event logger will allow a string and an integer to be logged as a pair. Strings do not
come from the heap, so I don’t need to manage them. The logger will keep track of only
the last N events, where N is determined at runtime. Once the logger fills up, the oldest
log entry is lost. The log contents can be printed from a console port on our system. The
log can also be queried to find out how many entries have been put into it. For this
scenario, we won’t worry about the log count reaching the capacity of an int. !
These requirements imply a class that looks like this: !

!
If this is the class you want, what would you do next? You might think about how to
store the log entries. You might consider using a circular array of log entries. You’re and
engineer, you would be thinking of how to solve the problem. Once you had the solution
in mind you would start coding the solution. Once you are done coding you would start
to consider how to test your solution. !
As the name implies, test-driven development has tests that drive the development of the
code. Tests are a forethought, not an afterthought. This does not mean that all the tests
are written, then all the target code. Rather, a single test is written, followed by writing

EventLog

+ LogIt(const char*, int)
+ GetCount() : int
+ Print()

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 1 20

mailto:james@wingman-sw.com

the code needed to satisfy the failing test. This process continues until the code has
enough functionality to be useful in the application. !
The TDD cycle looks like this:

1. Think of some behavior that needs to be added
2. Write a test that expresses the missing behavior
3. Compile the test, watch it fail
4. Add what is necessary to get the code to compile
5. Compile the code and
6. Run the test, watch it fail
7. Add the code needed to make the test pass
8. Look at your work and decide if design improvements (Refactoring) are [FOWLER]

needed
9. Repeat until needed behavior is implemented !

This is a feedback loop. The loop is tight. It may only take a few minutes to complete a
single cycle. A small amount of functionality is added each cycle, maybe only a few lines
of code each time through. The programmer gets to find out if the program is behaving
as they expect it to. !
That’s enough talking, let’s create the EventLog class. First we have to think of an initial
test. The current state of the system is that there is no EventLog class at all. Each
application class will have a test class. The test file, by convention, is named
EventLogTest. I am using a free unit testing tool called CppUnitLite. I will be running
these tests on the development machine. It is a good idea to also run the tests on the
target machine, but you just do not need to do it as often. !
Here is the first test:

!
Let me explain what we’re looking at. TestHarness.h defines macros and classes needed
to create tests and install the tests into the test harness. The TEST macro defines a test.
The parameters to TEST are used to create the name of a test class. By convention, the
first parameter is the name of the class being tested. The second parameter is the name of
the test. Between the curly braces is the definition of the test. The names are used under
the hood by CppUnitLite to name a test class. !

//EventLogTest.cpp
#include "TestHarness.h"
#include "EventLog.h" !
TEST(EventLog, Create)
{
 EventLog* log = new EventLog();

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 2 20

mailto:james@wingman-sw.com

This does not seem like much of a test, but it is a start. I am working in small steps,
getting feedback from the compiler about the code. This test confirms that the name
EventLog is available. If this compiled without errors, maybe there is a name clash in
your code base (or maybe your co-worker pulled an all-nighter wrote the code for you).
Next I define the class. !

!
This initial test and piece of code have a fair amount of overhead, so getting this to
compile is a step not to be underestimated. Once this compiles we get a link error, at
which point I add the constructor and destructor for the class in the cpp file. Notice I hid
the copy constructor and assignment operator. I am preventing the compiler from
generating those member functions. If I decide I need them, I’ll write a test for them and
probably write them my self. !
When I run the test I get this output:

!
Wow, we ran a test that does nothing but create an object and CppUnitLite already found
an error. I created an EventLog instance on the heap and never deleted it. I’ll fix the i

test, getting rid of the error. !
Up to this point we have really only been getting ready to do some useful work. The
Create test should check the initial state of the EventLog.

!
One initial condition I expect is that the log will be empty when I create it. I test that
assertion using the LONGS_EQUAL macro. The first parameter is the expected value. ii

//EventLog.h - excerpt !
class EventLog
{
 public:
 EventLog();
 ~EventLog(); !
 private:
 EventLog(const EventLog&); //Hide the copy constructor
 EventLog& operator=(const EventLog&);//Hide assignment
};

1 tests ran with 0 checks executed and no test failures
Detected memory leaks!

TEST(EventLog, Create)
{
 EventLog* log = new EventLog();
 LONGS_EQUAL(0, log->GetCount());
 delete log;
}

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 3 20

mailto:james@wingman-sw.com

The second parameter is checked for numeric equality with the first value. When this is
compiled, an error is generated because there is no GetCount method. I’ll add the
method to the class initially with an implementation that fails, so that I am confident that
the test is hooked into the test harness.

!

!
The resulting output is:

!
This result demonstrates that my new test is being called. It failed just as was expected. I
also was notified of a memory leak. This memory leak is due to the early termination of
the test. When LONGS_EQUAL macro fails the test is terminated and the delete
log statement is never executed resulting in a memory leak. !
Next I want to make this test pass. I make the test pass by adding a member variable to
count the items logged, and initialize the count to zero in the constructor.

! !
Let’s log something. With this test we will evolve the logging interface and check that a
single item is logged. Later, we will log multiple items and eventually log an item that
causes the log to be over-filled, causing the oldest item to be discarded. I really need to
print out the log to see what it contains. It is tempting to just implement EventLog and
test it later, but I will resist that.

//EventLog.h - excerpt !
class EventLog
{
 public:
 . . .
 int GetCount();
 . . . !
};

//EventLog.cpp – excerpt !
int EventLog::GetCount()
{
 return -1;
}

Failure: "expected 0 but was: -1"
 line 7 in C:\PROJECTS\EventLog\EventLogTest.cpp !
1 tests ran with 1 checks executed and 1 failures
Detected memory leaks!

1 tests ran with 1 checks executed and no test failures
Press any key to continue

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 4 20

mailto:james@wingman-sw.com

!
How can progress be made without jumping into the implementation details? One thing I
can do is to use GetCount to see if the log entry is made. That is an easy test. It’s not
thorough, but it is easy. Thorough will come. I write the test.

!
To make this test pass I just have LogIt increment the counter and return. That is not the
whole implementation, but it is enough to get the test to pass. The first time I run this test
I comment out logCount++ so that my test fails. Then the code is restored and the
test passes.

! !
This test needs to be improved. The way the problem is stated, there is a need to output
the log. I’d rather not deal with printing the log yet. Without printing, there is no
visibility into the internals of the EventLog. That is a good thing, because I’d like to
encapsulate those details. But the hidden implementation is making it hard for me to
devise the next test. To make life right now a little easier I’ll add two accessor methods
to the EventLog interface. The accessors will tell me what is stored in the log at some
specific location. !
As the user of the log I should not care how the internals are organized, but as the
designer I am free to add methods to aid in testing. I’d prefer to test the log through the
public interface, so I might remove these accessors later when I have a fully functional
EventLog class.

TEST(EventLog, LogOne)
{
 EventLog* log = new EventLog();
 log->LogIt("The answer is", 42);
 LONGS_EQUAL(1, log->GetCount());
 delete log;
}

//EventLog.cpp – excerpt !
void EventLog::LogIt(const char* str, int value)
{
 logCount++;
}

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 5 20

mailto:james@wingman-sw.com

!
To get this test to pass I can rely on Kent Beck’s advice to “Fake it till you make
it” . In the following excerpt, LogIt does not really log anything, and the query [BECK2]

methods return constant values. I’m rigging the logger to pass the tests. Again, I make
sure my first run fails by first having GetLogValue return a 43, then fixing it to return a
42.

!
Run the test.

!
The faked out the implementation passes the test. This is worth doing to keep me moving
forward at a steady pace. The fake-outs are cheap to write and the next test, log two
events, will reveal their weakness. !

TEST(EventLog, LogOne)
{
 EventLog* log = new EventLog();
 log->LogIt("The answer is", 42);
 LONGS_EQUAL(1, log->GetCount());
 STRCMP_EQUAL("The answer is", log->getLogString(0));
 LONGS_EQUAL(42, log->getLogValue(0)); !
 delete log;

//EventLog.cpp – excerpt !
int EventLog::GetLogValue(int index) const
{
 return 42;
} !
const char* EventLog::GetLogString(int index) const
{
 return "The answer is";
}

2 tests ran with 4 checks executed and no test failures
Press any key to continue

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 6 20

mailto:james@wingman-sw.com

!
Run the test and watch it fail.

!
How should the events be stored in the log? A simple thing to do is to create a data class
that holds the string and the int and then make an array of them. I have to consider how
big of a step this is. If adding this struct and array will take more than a few minutes, I
should come up with an intermediate step. It seems pretty straight forward, but I think
I’ll start with a single instance of the LogEntry struct rather than an array. !
I follow these steps:

1. Comment out the new test
2. Compile and test. Tests pass.
3. Add the LogEntry struct to EventLog.h
4. Compile
5. Add a LogEntry instance to class EventLog
6. Compile
7. Modify LogIt to store the string and value into the LogEntry
8. Compile
9. Modify GetLogValue and GetLogString to use the data stored in the log entry
10. Compile and test !

That was more work than I thought. I’m glad I started with a single instance. Now we
can un-comment the LogTwo test. The test fails. To make the tests pass I follow these
steps:

1. Change the LogEntry instance to a pointer to a LogEntry. This will point to a
LogEntry array.

TEST(EventLog, LogTwo)
{
 EventLog* log = new EventLog();
 log->LogIt("The answer is", 42);
 log->LogIt("Elapsed time", 523);
 LONGS_EQUAL(2, log->GetCount());
 LONGS_EQUAL(42, log->GetLogValue(0));
 STRCMP_EQUAL("The answer is", log->GetLogString(0));
 LONGS_EQUAL(523, log->GetLogValue(1));
 STRCMP_EQUAL("Elapsed time", log->GetLogString(1));
 delete log;
}

Failure: "expected 1 but was: 2"
 line 26 in C:\PROJECTS\EventLog\EventLogTest.cpp !
3 tests ran with 5 checks executed and 1 failures
Detected memory leaks!

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 7 20

mailto:james@wingman-sw.com

2. Compile, let the failures lead you to the invalid usages of the now Obsolete
LogEntry instance variable. Fix LogIt, GetLogValue and GetLogString so they
use the data stored in the log entry array.

3. Compile
4. Allocate an array in the constructor
5. How big should the log be? Make the log size a constructor parameter. Add the

size parameter to the other EventLog creations.
6. Compile
7. Store the string and the value into the logCount array index
8. Compile and test !
Ah! I get a memory leak failure. Oh, I forgot to delete the LogEntry array. Delete it
in the destructor and now the tests pass. !

!
There have been a lot of changes, so let’s take a look at the current code.

!

3 tests ran with 9 checks executed and no test failures
Press any key to continue

//EventLog.h – excerpt
struct LogEntry
{
 const char* string;
 int value;
}; !
class EventLog
{
 public:
 EventLog(int capacity);
 virtual ~EventLog(); !
 int GetCount() const;
 void LogIt(const char* str, int value); !
 //methods used for testing
 int GetLogValue(int index) const;
 const char* GetLogString(int index) const; !
 private: !
 int logCount;
 LogEntry* entries;
 EventLog(const EventLog&);
 EventLog& operator=(const EventLog&);
};

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 8 20

mailto:james@wingman-sw.com

! !
This EventLog implementation will work fine as long as we don’t fill up the log. Finally
the moment we’ve been waiting for. What do we do when we overfill the log? Our
requirements are to discard the oldest log entry. A circular array would be an effective
way to implement this. Our EventLog class has to pass this test:

//EventLog.cpp – excerpt !
EventLog::EventLog(int capacity)
: logCount(0)
, entries(new LogEntry[capacity])
{
} !
EventLog::~EventLog()
{
 delete [] entries;
} !
int EventLog::GetCount() const
{
 return logCount;
} !
void EventLog::LogIt(const char* str, int value)
{
 entries[logCount].string = str;
 entries[logCount].value = value;
 logCount++;
} !
int EventLog::GetLogValue(int index) const
{
 return entries[index].value;
} !
const char* EventLog::GetLogString(int index) const
{
 return entries[index].string;
}

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 9 20

mailto:james@wingman-sw.com

!
Running the tests we get the expected failure. Wrap-around has not been implemented
yet, so 42 is still in slot zero.

!
To implement the wrap-around I need another index. I could reuse the logCount member
variable, but my requirements call for being able to report the total number of items ever
logged. I add a logIndex instance variable to the class definition and modify LogIt as
follows.

!
Much to my surprise I get these results:

TEST(EventLog, LogWrapAround)
{
 EventLog* log = new EventLog(5);
 for (int i = 0; i < 5; i++)
 log->LogIt("The answer might be", 42 + i); !
 log->LogIt("Overwrite 0", 199);
 LONGS_EQUAL(6, log->GetCount());
 LONGS_EQUAL(199, log->GetLogValue(0));
 STRCMP_EQUAL("Overwrite 0", log->GetLogString(0));
 LONGS_EQUAL(42, log->GetLogValue(1));
 delete log;
}

Failure: "expected 199 but was: 42"
 line 43 in C:\PROJECTS\EventLog\EventLogTest.cpp !
4 tests ran with 11 checks executed and 1 failures
Detected memory leaks!

//EventLog.cpp – excerpt !
void EventLog::LogIt(const char* str, int value)
{
 logCount++;
 entries[logIndex].string = str;
 entries[logIndex].value = value;
 if (++logIndex < capacity)
 logIndex = 0;
} !

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 10 20

mailto:james@wingman-sw.com

!
Like usual I make a small mistake with my conditional logic. I change the “<” to “>=”
compile and test. !

!
Wait a second, another failure! Look closely, this failure is due a cut and paste error in
the LogWrapAround test. The value logged in slot one is 43 not 42. I change the 42 to
a 43 compile and test and I am back in business. !
Do tests have to be tested? That’s an interesting question. In test driven development
how do the test get tested? Part of the answer is that the tests are tested by the code
(completeness testing is another issue). Working code found a bug in a broken test. Both
these programming errors were very easy to find, mainly due to the fact that I just created
the problem only seconds before. If I had not a day ago or a week ago it would be much
harder to find the problems. Especially if the logger was integrated into some application
that itself could have other problems. !
The only thing left to do is to get the EventLog to support a print method. Testing this
will be a bit tricky. If my requirement is to print to the screen, how can I automate the
test for it? If I have to visually inspect the output this test will not be executed very often.
A value of the tests that I have created so far is that they are installed into my test
framework and whenever I change anything, I can re-run my tests, testing everything. A
manual test won’t get done often enough and defects can creep in. !
So, a manual test is not an option. In C++ text output is done by writing to an output
stream called cout. C++ and the embedded C++ standard support cout and a stream
called a strstream . These two streams implement a common interface called ostream. iii

Because they share the same interface I can code my print function to print to an ostream.
At runtime cout is used and during testing strstream is used. The relationship between
printf and sprintf is like the relationship between cout and strstream. cout writes to
standard output, as does printf. strstream writes to a text buffer, as sprintf writes to a text
buffer.

Failure: "expected 43 but was: -842150451"
 line 45 in c:\projects\eventlog\eventlogtest.cpp !
Failure: "expected 42 but was: 523"
 line 28 in c:\projects\eventlog\eventlogtest.cpp !
4 tests ran with 10 checks executed and 2 failures
Detected memory leaks!

Failure: "expected 42 but was: 43"
 line 45 in c:\projects\eventlog\eventlogtest.cpp !
4 tests ran with 13 checks executed and 1 failures
Detected memory leaks!

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 11 20

mailto:james@wingman-sw.com

!
Let’s start simple. What will the print look like for an empty log? The output should
show that there are no items logged, and print a separator. Here is the test.

!
This test creates a strstream to capture the output. It calls Print, passing in the stream. iv

The character string is copied from the stream and compared to the expected results.
When I first wrote this test I thought I could use os.str() directly, but it turned out it is not
null terminated producing a test failure. It took a bit of experimenting to get this test to
pass. Additionally the os.str() operation returns a heap object that has to be freed. The
memory leak detector found this one. !
This code passes this first test:

!
I have a test strategy, an intial test and an initial implementation. Now it is time to print a
log that contains something. Fill the log and print it. Don’t over-fill the log yet. !

//EventLogTest.cpp – excerpt
TEST(EventLog, LogPrintEmptyLog)
{
 EventLog* log = new EventLog(5); !
 strstream os;
 log->Print(os);
 os << '\0'; //terminate the stored string !
 char * expected =
 "EventLog Items logged 0\n"\
 "----\n"; !
 char* output = os.str();
 STRCMP_EQUAL(expected, output); !
 delete output;
 delete log;

//EventLog.cpp – excerpt, initial implementation !
void EventLog::Print(ostream& os) const
{
 os << "EventLog Items logged 0\n";
 os << "----\n";
}

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 12 20

mailto:james@wingman-sw.com

!
Here is the initial implementation:

!
When I run the tests this crashes. I introduced another simple mistake. When the log is
not full, using the capacity member variable as the loop limit causes access to
uninitialized log entries. Accessing uninitialized data results in undefined behavior (its
defined in this case, the system crashes). For now I just change from capacity to
logCount. This is not the final version, but it makes this test pass.

//EventLogTest.cpp – excerpt !
TEST(EventLog, LogPrintFullLog)
{
 EventLog* log = new EventLog(5); !
 for (int i = 0; i < 5; i++)
 log->LogIt("Fill it up", 100+i); !
 strstream os;
 log->Print(os);
 os << '\0'; //terminate the stored string !
 char * expected =
 "EventLog Items logged 5\n"\
 "1 Fill it up 100\n"\
 "2 Fill it up 101\n"\
 "3 Fill it up 102\n"\
 "4 Fill it up 103\n"\
 "5 Fill it up 104\n"\
 "----\n"; !
 char* output = os.str(); !
 STRCMP_EQUAL(expected, output); !
 delete output;
 delete log;

//EventLog.cpp – excerpt !
void EventLog::Print(ostream& os) const
{
 os << "EventLog Items logged " << logCount << "\n";
 for (int i = 0; i < capacity; i++)
 os << i + 1 << " "
 << entries[i].string << " "
 << entries[i].value << "\n";
 os << "----\n";
}

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 13 20

mailto:james@wingman-sw.com

!
The following test will over-fill the log. We should witness that the oldest log entry is
discarded and the entries are listed from oldest to newest. !

!
This test also crashes because of the naive implementation of Print’s loop. The log is to
be printed from oldest to newest. It’s time to think for a minute. If the log is full,
logIndex refers to the oldest entry in the log. If the log is not full, slot zero is the oldest
log entry. The number of items to print for a full log is the log’s capacity. To print a log
that is not full, we print up logCount entries. That sounds reasonable enough. !
After a few tries, I got this code to pass the test. I am embarrassed to list all the ways I
messed this code up. Eventually the tests pass.

//EventLogTest.cpp – excerpt !
TEST(EventLog, LogPrintOverFullLog)
{
 EventLog* log = new EventLog(2); !
 log->LogIt("This should not print at all", 100);
 log->LogIt("This should print first", 101);
 log->LogIt("This should print last", 999); !
 strstream os;
 log->Print(os);
 os << '\0'; //terminate the stored string !
 char * expected =
 "EventLog Items logged 3\n"\
 "2 This should print first 101\n"\
 "3 This should print last 999\n"\
 "----\n"; !
 char* output = os.str();
 STRCMP_EQUAL(expected, output); !
 delete output;
 delete log;

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 14 20

mailto:james@wingman-sw.com

! !
This code works but I am not very happy with it. There is a lot going on in this function:
printing the header and footer, looping through and printing all items. This method
certainly does not a have single responsibility. Now that the code works and is fully
tested I’ll refactor it into a better design. (Earlier in the paper I said we might want to
remove the public accessor methods added to help in testing. I don’t see that they are
doing any harm, so I’ll leave them.)

Code After Refactoring
During Refactoring I extracted helper functions for the Print method. After each code
modification, the tests demonstrated that the behavior of the program did not change.

//EventLog.cpp – excerpt !
void EventLog::Print(ostream& os) const
{
 os << "EventLog Items logged " << logCount << "\n";
 int index = 0;
 int loopCount = logCount;
 int oldestLogCount = 1; !
 if (logCount >= capacity)
 {
 index = logIndex;
 loopCount = capacity;
 oldestLogCount = logCount - capacity + 1;
 }

 for (int i = 0; i < loopCount; i++)
 { !
 os << oldestLogCount + i << " "
 << entries[index].string << " "
 << entries[index].value << "\n"; !
 if (++index >= capacity)
 index = 0;
 } !
 os << "----\n";

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 15 20

mailto:james@wingman-sw.com

!

//EventLog.h – excerpt !
class EventLog
{
 public:
 EventLog(int capacity); !
 virtual ~EventLog(); !
 int GetCount() const;
 void LogIt(const char* str, int value);
 void Print(ostream& output) const; !
 //methods used for testing
 int GetLogValue(int index) const;
 const char* GetLogString(int index) const; !
 private: !
 int logCount;
 int logIndex;
 int capacity;
 LogEntry* entries; !
 void PrintHeader(ostream& output) const;
 void PrintFooter(ostream& output) const;
 void PrintLogItems(ostream& output) const;
 void PrintLogItem(ostream& output,

int logNumber, int index) const;
 int NextIndex(int index) const; !
 EventLog(const EventLog&);
 EventLog& operator=(const EventLog&); !

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 16 20

mailto:james@wingman-sw.com

!

//EventLog.cpp – excerpt part 1
EventLog::EventLog(int theCapacity)
: logCount(0)
, logIndex(0)
, capacity(theCapacity)
, entries(new LogEntry[theCapacity])
{
} !
EventLog::~EventLog()
{
 delete [] entries;
} !
int EventLog::GetCount() const
{
 return logCount;
} !
void EventLog::LogIt(const char* str, int value)
{
 logCount++;
 entries[logIndex].string = str;
 entries[logIndex].value = value;
 logIndex = NextIndex(logIndex);;
} !
int EventLog::GetLogValue(int index) const
{
 return entries[index].value;
} !
const char* EventLog::GetLogString(int index) const
{
 return entries[index].string;
} !
int EventLog::NextIndex(int index) const
{
 if (++index >= capacity)
 index = 0;
 return index;
}

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 17 20

mailto:james@wingman-sw.com

!

//EventLog.cpp – excerpt part 2
void EventLog::Print(ostream& os) const
{
 PrintHeader(os);
 PrintLogItems(os);
 PrintFooter(os);
} !
void EventLog::PrintHeader(ostream& os) const
{
 os << "EventLog Items logged " << logCount << "\n";
} !
void EventLog::PrintFooter(ostream& os) const
{
 os << "----\n";
} !
void EventLog::PrintLogItems(ostream& os) const
{
 int index = 0;
 int loopCount = logCount;
 int oldestLogCount = 1; !
 if (logCount >= capacity)
 {
 index = logIndex;
 loopCount = capacity;
 oldestLogCount = logCount - capacity + 1;
 }

 for (int i = 0; i < loopCount; i++)
 { !
 PrintLogItem(os, oldestLogCount+i, index); !
 index = NextIndex(index);
 }
} !
void EventLog::PrintLogItem(ostream& os, int logNumber, int
index) const
{
 os << logNumber << " "
 << entries[index].string << " "
 << entries[index].value << "\n"; !
} !

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 18 20

mailto:james@wingman-sw.com

Conclusions
TDD is a predictable process. Code now, debug later programming is risky and not as
predictable. Code written yesterday, last week, or last month is much harder to debug
than the code that was written one minute ago. The tests have to be maintained, but they
keep giving back. !
I find that small things slip by often. The tests really give me the feedback to see if what
I have coded actually works. Small mistakes can cause big problems when left to lay in
wait. !
The tests we developed serve a few purposes: to fully unit test the code, to document how
to use the code, to document what the code does, and to act as a safety net when making
changes. The focus on testing makes the designer pay attention first to the interface and
external behavior. Implementation details are secondary. The technique encourages
decoupling of software modules. Notice in this design how the print function is loosely
coupled to a specific way to print. For our print function to print to standard output all
we have to do is call it passing the cout standard output stream like this. !
! !
A loosely coupled software system is easier to evolve. Automated tests make a system
easier to evolve. Changes are made and the tests tell us if there are unanticipated side
effects. !
This technique can be effectively used for developing embedded software. It means that
you have to invest time in writing code that manages the dependencies directed to the
target execution environment. Ideally the modules can be decoupled from the target
allowing tests like I developed in this paper to be run on your development and execution
environments. This takes time and is worth it. It is paid for many times over in reduced
debug time. !
The EventLog class is a terminal node class in the dependency hierarchy. TDD can be
used for developing classes that are in the midst of the dependency network. But that’s a
topic for another paper (coming soon).

log->Print(cout);

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 19 20

 Beck, Kent, Extreme Programming Explained, Addison Wesley, 1999[BECK]

 CppUnitLite - http://www.objectmentor.com/resources/downloads/index[OM]

 Koss, Dr. Robert, Langr, Jeff Test Driven Development in C/C++, C/C++ Users Journal, October [KOSS]

2002, http://www.cuj.com/articles/2002/0210/0210a/0210a.htm?topic=articles

 Fowler, Martin, Refactoring Improving the Design of Existing Code, Reading, MA, Addison [FOWLER]

Wesley,1999

mailto:james@wingman-sw.com

 Some of you embedded engineers may be cringing at using the heap. This is a test. It is OK here even if i

it is not OK in your final system.

 There are other macros such as: CHECK(bool), CHECK_EQUAL, STRCMP_EQUAL ii

DOUBLES_EQUAL, FAIL

 Beck, Kent, Test Driven Development By Example, Addison Wesley, 2003 [BECK2]!
(Source code from this paper is available at www.objectmentor.com/resources/articles/EventLog.zip)

 It is a bit unclear if strstream is supported in embedded C++. The Dinkumware implementation implies iii

that it is. Green hills implies that a similar capability using sstream is available;

 It is not completely clear that the Embedded C++ draft standard supports strstream. It appears that iv

mainstream cross compilers, such as the Dinkumware compiler, do.

Test Driven Development for Embedded C++ James W. Grenning
Copyright © March 2002-2003 All Rights Reserved ! of ! james@wingman-sw.com 20 20

mailto:james@wingman-sw.com

